Concerns with ARM Project

- ARM System not developed, no background or testing
- Already highly degraded ground- and surface water quality—similar to Yakima (hi nitrate/intense agriculture)
- Large scale implementation before testing and evaluation of unproven concept
- More robust scientific testing needed before implementation
- Lack of collaboration to ensure water quality protection

<u>Vulnerable</u> <u>Aquifer</u>

- •Less than 10 feet to water
- •Thin (25-50 feet thick)
- •Sole Source of DW for ~30,000 people
- •Heavy Agricultural use
 - •40,000 cows
 - Berries

- •Nitrate in wells:
 - •1997---21% over 10 mg/L (250 wells)
 - •2003-2005 --70% over 10 mg/L (35 wells)

Whatcom surface waters severely impacted

- Over 500 listings
- Nooksack Listings
 - Over 200
- 2nd most in the state
- WQ was improving after 1998 TMDL
- FC increase in 7 of 8 sites since 2003
- Drayton Harbor
 - Mostly prohibited for shellfish harvest
 - Worst WQ: Nov to Feb
 - TMDL data shows high FC throughout winter months, not just during fall & spring application months

- Surface water impacts in areas with significant dairy land
 - Winter manure applications: High risk of bacteria and nutrient loading to surface water

Local Water Budget

- October-March water surplus, crop growth minimal
- No guarantee crop takes up all nitrate when released

Winter manure= Fecal contamination

- Nov to Jan = most frequent and largest runoff events
- Fecals survive in soil for weeks to months –HIGH concentrations
- •Even if manure applied under winter favorable conditions, next runoff carries fecals to SW

Common Ground

- •Groundwater, surface water, shellfish areas are contaminated
- Current manure management needs improvement
- •Field-specific information is needed to improve nutrient application
- Outreach/training of producers is needed for change

Concerns with ARM

- •ARM System not developed, no background or track record
- •ARM needs testing, validation on small scale before widespread use
- Water quality already highly degraded (nitrate, fecal coliform)
- •Study should be objective, not pre-supposing improvement
- •Monitoring critical for evaluating ARM—need careful groundwater and surface water monitoring. Many people are already drinking water above the MCL for nitrate. FC levels getting worse in Nooksack River tributaries.
- •Tribes, Ecology and EPA not included in design and testing of ARM model—need to be
- Potential to further degrade drinking water source for people with no alternative source

Suggestions

- Include Ecology, Tribes and EPA in ARM System development and testing
- Test new ARM System concept--pilot scale
 - Groundwater and surface water monitoring
 - Peer review—EPA, Ecology, Tribes
- Evaluate pilot testing before implementation
- Include stakeholders in evaluation and implementation

Beyond ARM—Solutions for Manure Problems

- Water Quality BMP/pollution control manuals with clear expectations for protecting water quality
- Fix Gaps in Dairy Program:
 Require implementation of NMP plan
 Require update of NMP plan when significant operation changes (i.e., increased herd size)
- Make next CAFO permit more effective at addressing issues we know exist.
- In TMDL's be clear and specific about the types of pollution control practices that are needed to protect water quality
- Develop strategy for 3rd party manure issues